Immunoglobulin binding by the regular surface array of Aeromonas salmonicida.

نویسندگان

  • B M Phipps
  • W W Kay
چکیده

The cell surface of Aeromonas salmonicida is covered by a regular surface array composed of a single species of protein, the A-protein (Phipps, B. M., Trust, T. J., Ishiguro, E. E., and Kay, W. W. (1983) Biochemistry 22, 2934-2939). The array, known as the A-layer, is the key virulence factor for this organism. Cells containing the A-layer specifically bound rabbit IgG and human IgM with high affinity (KD = 1.0 X 10(-6) M and 3.3 X 10(-6) M, respectively), but neither isogenic A-protein-deficient strains nor an Aeromonas hydrophila strain also possessing a regular surface array had binding activity. Selective removal of A-protein at pH 2.2 inactivated IgG binding. Structurally intact IgG was requisite for binding since both Fab and Fc fragments were inactive. Aeromonas A-protein did not share the same IgG binding sites as Staphylococcus aureus protein A. Purified A-protein bound IgG only weakly, but reassembled A-layer regained binding activity. Protein modification and perturbation of the A-layer indicated that no single amino acid residue was critical for binding, and that the binding site consisted of a native arrangement of at least four A-protein monomers in the layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porphyrin binding by the surface array virulence protein of Aeromonas salmonicida.

Congo red binding by virulent A-layer-containing (A+) and avirulent A-layer-deficient (A-) strains of Aeromonas salmonicida was examined. Congo red binding to A+ cells was enhanced by salt and thus hydrophobically driven, but at low Congo red concentrations binding was salt independent. Congo red was bound by A+ cells by a kinetically distinct mechanism (Kd, 0.25 microM) which was absent in A- ...

متن کامل

Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida.

The paracrystalline surface protein array of the pathogenic bacterium Aeromonas salmonicida is a primary virulence factor with novel binding capabilities. The species-specific structural gene (vapA) for this array protein (A-protein) was cloned into lambda gt11 but was unstable when expressed in Escherichia coli, undergoing an 816-base pair deletion due to a 21-base pair direct repeat within th...

متن کامل

Effects of polymyxin B nonapeptide on Aeromonas salmonicida.

In contrast to polymyxin B-susceptible gram-negative bacteria of human origin, the fish pathogen Aeromonas salmonicida was resistant to sensitization by polymyxin B nonapeptide (PMBN) to hydrophobic antibiotics. Similarly, sensitization of A. salmonicida strains by PMBN to the bactericidal action of brook trout (Salvelinus fontinalis) serum complement was less pronounced than the similar effect...

متن کامل

Cloning of the gene for the surface array protein of Aeromonas salmonicida and evidence linking loss of expression with genetic deletion.

A gene bank of DNA from the fish pathogenic bacterium Aeromonas salmonicida was constructed in the bacteriophage lambda gt11. Phage lambda gt11/10G, a recombinant carrying a 4.0-kilobase fragment of A. salmonicida DNA, was found to express the surface array protein (A protein) in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the protein expressed from t...

متن کامل

Electrophoretic and immunochemical analyses of the lipopolysaccharides from various strains of Aeromonas hydrophila.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the lipopolysaccharides isolated from strains of Aeromonas hydrophila which exhibit virulence for fish and which autoaggregate during growth in static broth culture. The lipopolysaccharides contained O-polysaccharide chains of homogeneous chain length. Two of the strains produced a surface protein array, and immunoflu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 263 19  شماره 

صفحات  -

تاریخ انتشار 1988